SV'S6

Silicon Valley Software Group

TECHNICAL DEBT

A framework for business leaders and engineers
to make joint decisions on technical debit.

! o
\ "

Sv S Silicon Valley Software Group 2
TECHNICAL DEBT

TECHNICAL DEBT

Bitter battles are often waged over technical debt. Business-minded
stakeholders accuse engineers of being perfectionists for wanting to
fix it, while engineers accuse the business people of “not getting it”.
Both perspectives are valid: a company needs a steady stream of new
features to grow, yet a product that sees continued traffic growth will
need to be re-architected at some point. This white paper offers a
framework for these two perspectives to meet, share the same
language, and thus drive decisions that are supported by all.

Inspired by Dan Hackner’s article Managing Technical Debt, this paper
offers an in-depth analysis of technical debt, as well as strategies to
reduce it in combination with new feature development. We will cover:

e The definition of technical debt and why it occurs

e Therisk and cost associated with accumulating debt

Best practices in planning and communication

e Day-to-day considerations in dealing with technical debt

We will address in-depth the various ways —some legitimate, some
not—that technical debt is created. In this paper we position ourselves
at a point in time, like during quarterly product roadmap review, when
we need to make decisions about future releases and allocation of
engineering resources (we will discuss strategies to prevent day-to-
day accumulation of technical debt in another paper).

http://svsg.co/managing-technical-debt/

Sv S Silicon Valley Software Group 3
TECHNICAL DEBT

WHAT IS TECHNICAL DEBT AND HOW
IS IT CREATED?

Martin Fowler, a leading voice on enterprise software, explains how
technical debt can arise from making certain decisions up front:

“Doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt. Like a financial debt, the technical
debt incurs interest payments, which come in the form of the extra
effort that we have to do in future development because of the quick
and dirty design choice. We can choose to continue paying the
interest, or we can pay down the principal by refactoring the quick and
dirty design into the better design. Although it costs to pay down the
principal, we gain by reduced interest payments in the future.”

{9

Technical Debt comes from multiple sources, not
just fixing code written quick and dirty, but also
from a UX paradigm that becomes dated, an
architecture that can no longer support new
features or performance requirements,
frameworks that are no longer supported.

33

http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html

sv S Silicon Valley Software Group 4
TECHNICAL DEBT

“Doing things the quick and dirty way” is an important source of
technical debt, but by far not the only one. Other sources of technical
debt have “natural causes” that are unrelated to poor decisions made
by the engineering team. It can stem from inheriting a product with
legacy code, or outdated infrastructure that slows down velocity and
creates painful performance problems. It can also happen when code
simply ages—the user interface or data models become inadequate as
more features are added, or the architecture must be restructured to
meet new requirements. Similarly, when software built to run on a
handful of servers for a relatively small customer base sees traffic
grow by 10x, or 100x, it reaches a point where it needs to be
refactored or even re-architected.

Whatever the cause, technical debt must be accounted for and
reduced, in order to avoid reaching a dangerous tipping point where
its weight reaches a level that affects the financial health of the
business.

Sv S Silicon Valley Software Group 5
TECHNICAL DEBT

THE RISK AND COST OF TECHNICAL
DEBT

Technical debt creates a burden that can cripple a company’s velocity
and growth rate if left unattended. When we take on any amount of
technical debt, whether willfully taken on or inherited, we are taking on
a liability that impacts us in two different ways: a burden to pay and a
risk that must be managed.

The Burden of Paying Back the Debt

On one hand, if we “pay now” (i.e. if we pay the principal) any money
we spend paying down technical debt cannot be spent on new
features or enhancements. On the other, if we “pay later”, the interest
and possibly the principal continues to accumulate. Left unchecked,
the accumulation of technical debt can eventually render us
“bankrupt” —at a point where we can no longer respond to unplanned
events quickly enough to stay competitive.

Example: When 0Old Technology Gets Pushed Out En Masse

In September of 2015, Chrome started blocking Flash ads from
auto-playing on websites. This came on the back of first Safari’s,
then Mozilla’s, then Amazon's decision to do the same. This was
the “writing on the wall” that browsers would sooner or later stop
supporting Flash in favor of HTMLS5. If your website or
application was written in Flash, this decision instantly created a
huge amount of technical debt for the product.

Sv S Silicon Valley Software Group 6
TECHNICAL DEBT

This is an example where technical debt is not caused by poor decisions,
lack of planning, or expediency to release a product to customers, but
rather by external factors. Other examples are Apple moving to Swift as
its iIOS development language of choice (instead of Objective-C), or
Facebook deciding to shutter the Parse development platform.

Risk Caused by Technical Debt

Debt not only creates a burden that needs to be paid back but it also
creates risk. Because risk is complicated and often unintuitive to grasp, it
is often overlooked. However, managing risk from technical debt is best
done from a preventative standpoint—like with health care, early
intervention can prevent a serious emergency.

Sv S Silicon Valley Software Group 7
TECHNICAL DEBT
There are two kinds of risk to monitor:

e Aggregative

An insidious risk that accumulates over time but does not exhibit a
notable turning point that puts the company in severe danger.
However, as it builds up, it eventually prohibits the company from
responding quickly to new market opportunities, competitive
pressures, or security attacks.

The best example of this is unmaintained code. It can go on for
several years without being a serious problem, but finally grows to a
size where implementing a new feature requires more time fixing
existing code than writing new code.

e Time-driven

A risk that increases significantly with the passing of time but often
retains the same cost to fix, much like changing the oil in a car: the
cost is the same whether you can change the oil after 5,000 or
20,000 miles. Yet, at a certain point, neglecting to fix the issue can
result in catastrophic setbacks.

A good example of time-driven risk is the result of underinvesting in
datacenter monitoring tools, which often get dismissed when
companies are running on a small, simple infrastructure. But as a
SaaS product grows and uses more servers, diagnosing issues is
more complex. There is a high risk of experiencing major
performance issues and irreparably damaging the health of the
company.

Sv S Silicon Valley Software Group 8
TECHNICAL DEBT

Making Decisions About Risk

When we think about risk, we tend to focus more on two out of three
important variables: the likelihood of the negative event and the cost
of a remedy.

Yet a third variable must be considered so we do not dismiss the rare
events that can ruin the health of an otherwise successful company—
the cost of a catastrophic negative event. We can calculate risk by
“expected cost”, or the probability of the negative event times its cost,
and compare it against the cost of the remedy. For example, a startup
that has just launched its product should not invest in a disaster
recovery plan that will mitigate risk if the datacenter is down for an
extended period of time. As the company reaches $100 million in
revenue, the equation flips.

I Catastrophic risk is difficult to evaluate, yet it
cannot be ignored.

Worse, some or all of its customers may never come back after a
security exploit. | experienced it firsthand with a consumer mobile app
where a security attack on one of our partners forced us to reset the
passwords of all our customers. Even after 3 months, one third of our
customers had never bothered to create their new password.

Risk that could lead to the death of the company is non-negotiable. It
is too dangerous to let warranties on critical networking, security, and
storage subsystems become outdated. While the cost of paying for an
expensive disaster recovery plan or other preemptive security
measures may seem high, it is not worth losing everything the
company has worked for.

Sv S Silicon Valley Software Group 9
TECHNICAL DEBT

BEST PRACTICES IN TECHNICAL DEBT
MANAGEMENT

Once we understand the risk and cost of technical debt, we can use
this knowledge to outline a detailed plan for dealing with it. However,
this not enough. Because developing new features and reducing
technical debt draw from the same pool of engineers, we need to
develop a mechanism to resolve this competition for resources.

Finding a Common Language

Reducing technical debt competes for the same engineering
resources as the development of new features, enhancements, and
bug fixes requested by customers. From a CEQO’s perspective, new
features take priority because they create new revenue. On the other
hand, fixing the technical debt on a feature that is already shipped is
perceived as 100% cost and 0% benefit. Yet failing to address
technical debt in time could create massive discontent among existing
customers (if the debt causes an outage of the site, or if the page load
time becomes too slow).

In order for engineers and other executives to speak the same
language, and for them to be able to compare costs and benefits of
new features versus reducing technical debt, the best tool is to use the
return on investment. More specifically, the case for reducing technical
debt must demonstrate that it either:

e Increases revenues
e Reduces costs

e Minimizes the risk of a catastrophic event

Sv s Silicon Valley Software Group 10
TECHNICAL DEBT

Example: Framing a Technology Decision by the Numbers

The DBA team has demonstrated that certain tables in the
database have become very large, causing certain queries to
become very slow. Implementation of a cache layer, or sharding,
for example, will bring queries execution time and thus response
time to the end user back up to standards.

However, from a customer’s perspective this does not count as
a new feature—it is simply expected behavior. One way to make
the argument is: our analytics show that engagement drops by
20% with each 1ms increase in response time, and that 10% of
the customers exhibiting low engagement churn each month. By
our calculations, we can eliminate churn of at least one hundred
users each month at an LTV of $500,000.

Engineers who discuss technical debt often present their arguments in
terms of purity of code, or beauty of the new implementation.
However, this is akin to speaking a different language than the
business team. This is why we, as engineering leaders, need to
translate the technical solution into customer benefits and return on
investment—which can then be compared to those brought by
prospective new features.

Sv S Silicon Valley Software Group
TECHNICAL DEBT

11

5 Essential Questions for Technical Debt

Decision-Makers

QUESTION

Will the debt lead to loss of
revenue (e.g. customer churn,
low upsell)?

Does the debt carry a
negative risk to the viability or
the success of the company?

Does the debt impact our
velocity to develop new
features?

Does the debt lead to high
operational costs?

Does the debt affect our
ability to scale?

PRESENTING THE CASE

Quantify this revenue loss,
and compare with cost to pay
down the debt.

Multiply the cost of a negative
event by its likelihood and
compare to cost of a remedy.

Quantify the revenues
associated with each option.

Quantify them and compare
to the cost of fixing it.

Measure the lost revenue
anticipated.

Sv S Silicon Valley Software Group 19
TECHNICAL DEBT

Using the Right Time Frame

For a discussion on paying down technical debt to be productive, all
parties need to agree on a meaningful time frame to measure return
on investment. Otherwise, the answer is guaranteed to be “NO”
because, by default, the assumption is that work must take place
within the next quarter. Over the time span of a quarter, technical
debt work is all cost and no reward.

Instead, when over one to two years for example, the benefits of the
investment accumulate and lead to a meaningful and positive ROI.

Example: An Agile Approach of Technical Debt

A development team might have a set amount of debt to

repay —fixing this technical debt might cost 5 story points for 2
quarters (12 2-week Sprints) for a total of 60 story points-
Sprints. However, once it is fixed, velocity will increase by 3
story points every Sprint. This results in a break-even point at
20 Sprints (within 3 quarters). Over a 2-year period, the team is
net positive 48 story points (-5*12 + 3*36), i.e. 1/2 story point
per Sprint. It demonstrates a strong rationale for fixing the
technical debit.

Using Debt to Drive Growth

Sometimes taking on technical debt is a deliberate strategy used to
accelerate growth. In this case, it is crucial to understand why we are
doing it, and to create a concrete plan for paying it back.

Sv S Silicon Valley Software Group 13
TECHNICAL DEBT
There are several reasons to purposely take on technical debt:

Getting to Market Faster

When we face pressure to ship code rapidly, we may benefit from
taking on some technical debt. Releasing an MVP in time for an
important deadline, for example, might be worth a faster
implementation that only handles the “happy paths”. In another
instance, we might catch wind of a feature that a competitor plans to
release and attempt to beat them to it.

Responding to a Feature Request from an Important Prospect

Sometimes a prospect requests a new feature as a dealbreaker. More
often than not, these requests come with a tight deadline (right before
the end of the quarter), and the team does just enough to meet the
particular prospect’s requirements, but not enough for the feature to
be shared right away with the all other customers. This technical debt
needs to be identified, and ideally resolved promptly, in part because
the sales team will advertise it to all their prospects as if it was “done”.

Silicon Valley Software Group
TECHNICAL DEBT

SV'S

Prioritizing Different Types of Technical Debt

Some types of technical debt pose more of a threat to the health of
our company than others. We present various scenarios in general
order of priority (see chart below). Naturally, the ranking will vary
depending on the specifics of the product and company, and the
following framework presents a good starting point to analyze our

technical debit.

Legacy Code ‘

Re-architecting

. the Product

High Risk

Operationally
Cost-Ineffective

at Some Point

Low Risk

Non-Optimal
Implementation

Strategic
Technical Debt

Out-of-Support
Packages

One-Off Request .
‘ Difficult-to-Maintain

Poor Automated
Test Coverage

Known to Break

Lack of
Documentation

Pay Later

Pay Now

14

SV'S

RISK LEVEL
Very high

STRATEGY
Pay now

RISK LEVEL
Very high

STRATEGY
Pay now

Silicon Valley Software Group

15

TECHNICAL DEBT

Out-of-Support Packages

For packages that affect the security or the overall
uptime of the system, timely updates are non-
negotiable. Failing to update can mean the end of your
business.

For others—like frameworks and libraries included in the
product—it is still dangerous to fall behind in the update
cycle. Once behind, the cost of addressing compatibility
issues becomes a burden that gets heavier at each
release. Eventually you’ll be faced with an unpalatable
choice: migrate to new tools that don’t support your old
packages or miss out on productivity enhancements
gained by adopting new tools.

The remedy here is easy and effective: upgrade all
packages used in the product during the first sprint of
each release. The effort is minimal compared to doing it
later, and there is no cost of validation since it is
included in the testing of the release.

Absorbing a One-Off Request from an Important
Prospect

One-off requests can be both rewarding and dangerous.
Rewarding when they bring in a game-changing
customer, but dangerous because the code is typically
written in a hurry. The result often only meets a single
customer’s narrow requirements and therefore is not
deployable to all users.

As a consequence we need to pay up this debt as
quickly as possible so that the feature can be deployed
to all users.

Sv S Silicon Valley Software Group
TECHNICAL DEBT

Quick Tip: Developing code for just one customer is
usually a very bad idea: Read Rich Mironov’s “Four
Laws Of Software Economics” and “The One Cost
Engineers and Product Managers Don't Consider” by
Kris Gale.

RISKLEVEL @ Difficult-to-Maintain Code

High
STRATEGY When code is hard to maintain, it creates significantly
Pay now more work when we need to add new features down

the road. While it is ideal to have working, clean, tested
and documented code, it is not always possible.

We should dedicate time at the start of the next release
to clean up the code. It will be quick because it is still
fresh in engineers’ minds, and we can reap the benefits
for a long time as functionality continues to expand.

AISKLEYEL @ Poor Automated Test Coverage

High
STRATEGY Coding and testing are two inseparable tasks in
Pay now building a product. When a product lacks proper test

coverage, the first we hear of a bug or an issue may be
straight from a user.

Untested code is worse than having
no product at all—it is a liability.

Once a product has reached a certain size (e.g. after a
year), each new release requires regression testing to
ensure that the old features still work. Performing these

http://www.mironov.com/4law2/
http://www.mironov.com/4law2/
http://firstround.com/review/The-one-cost-engineers-and-product-managers-dont-consider/
http://firstround.com/review/The-one-cost-engineers-and-product-managers-dont-consider/

SV'S

RISK LEVEL
High

STRATEGY
Refinance

Silicon Valley Software Group
TECHNICAL DEBT

regression tests manually, without the benefit of
automated tests, is time-consuming and error-prone.
Furthermore, the cost of not having proper automated
tests, and thus poor test coverage, is paid multiple
times because each new release requires several
cycles of manual regression testing.

The math in this case is straightforward: compare the
cost of creating the automated tests against the time it
will take to run the tests manually over the next
releases for the next two years. Then add the risk of
missing bugs because manual tests are typically less
thorough than automated tests. The result is almost
always in favor of writing automated tests.

The code that proves that a product
works is as valuable as the product
itself.

Automated tests need to be developed concurrently
with product code at all times.

Re-architecting the Product

Any architecture has a shelf life. For any product that
we build, we know that the architecture will need to
change at some point—due to product evolution,
higher performance requirements, availability of new
frameworks—and it is necessary to plan for this. It is
not a matter of “if” we will need to re-architect, it is a
matter of “when”.

17

Sv S Silicon Valley Software Group 18
TECHNICAL DEBT

We can plan for this in a couple of ways: one is to
“budget” this re-architecture on the product roadmap. As
a rule of thumb, any two-year product roadmap should
reserve at least one major re-architecture project in that
time frame. Similarly, whenever we raise a new round of
venture funding, or other investment, we should make
sure to include a budget for re-architecture projects that
will be necessary to achieve the business objectives that
underlie the funding.

RISKLEVEL o | agacy Code

High
STRATEGY Legacy code can be defined as old code that has been
Refinance developed by engineers who are no longer on the

project. It typically runs on old infrastructure and is more
vulnerable to security exploits and performance issues

than newer code. In almost all cases, legacy code lacks
automated tests and has poorly documented test cases.

Because it requires reverse-engineering each area of
code that needs updating, adding a new feature may
require more time spent reverse-engineering than
actually writing code for the new functionality.
Furthermore, without tests in place, there is a risk of
breaking other existing features without knowing about it
until after the update has shipped.

Retaining legacy code is akin to
building up debt on a high-interest
credit card.

Sv S Silicon Valley Software Group 19
TECHNICAL DEBT

If we wait too long, we end up paying two or three
times the principal for the small conveniences early on.
It is essential to the health of the company to assess
options realistically. Assuming that legacy code will
continue to run unmaintained without major incidents is
asking for trouble. Either we invest in progressively
bringing up the code to adequate quality so that we
continue selling it, or we must plan its end-of-life.

RISKLEVEL o Qperationally Cost-Ineffective

Medium
STRATEGY When code works but is costly to operate in the
Do the math datacenter because of past architectural choices, it
and revisit

regularly becomes technical debt. For example:

e It requires too much CPU or RAM

e |t does not auto-scale, or cannot be clustered
(which forces provisioning of servers for peak
load)

e |t does not provide proper metrics or alerts to the
Ops team, leading to a high Ops headcount

e It uses commercial software packages that
should be replaced by open source solutions

e |t uses inefficient open source solutions when
commercial software would be better

Under these circumstances, we can compare expected
engineering effort against savings in operations. We
must also factor in the cost of missed opportunity,
when engineers working on cost reductions could have
developed new, revenue-driving features. Calculations

SV'S

RISK LEVEL
Medium

STRATEGY
Pay now in
increments

RISK LEVEL
Low-Med

STRATEGY
Pay soon

Silicon Valley Software Group
TECHNICAL DEBT

must be revisited periodically as the company grows to
check whether they still lead to the same conclusion.

Lack of Documentation

When code lacks proper documentation, it becomes
harder and harder to work with it or update it later on.
Alleviating this type of technical debt can increase ROI
by accelerating the onboarding of new hires,
diminishing the risk of human single points of
knowledge (and thus single points of failure), and
increasing velocity on future enhancements.

After each release, developers should refresh code
documentation. For older code without documentation,
it should be treated as legacy code and given an
improvement plan over time.

Code Known to Break at Some Point

As engineers code and release a feature, they may
identify deficiencies that are not harmful now (corner
use cases, performance), but might become so later
under certain circumstances (if the number of users
double, for instance).

To deal with this type of technical
debt, we must add an enhancement
request to the backlog and tackle it
before the risk becomes material.

20

SV'S

RISK LEVEL
Low

STRATEGY
Get funding
to pay it
back as
soon as
possible

RISK LEVEL
Low

STRATEGY

In most
cases, put in
the backlog
to pay later

Silicon Valley Software Group
TECHNICAL DEBT

o

Strategic Technical Debt

Sometimes taking on technical debt can be a powerful
strategy. For example, we may build an MVP (Minimum
Viable Product) to attack new markets. This MVP is, by
design, as simple as possible so that it can be built
fast, and thus carries technical debt compared to what
the mainstream product will be. Because of this, we
cannot forget that this product will need to be
“hardened” once this new market takes off.

As a consequence, we also need to have a plan to fund
this hardening, which can be a lot more effort than the
MVP itself. It can be funded either through profits from
the new sales or a new round of investment.

Non-Optimal Implementation

Engineers often figure out the “right way” to implement
a functionality right after they complete it. However,
realizing there is a better alternative does not always
lead to technical debt.

For example, if a developer thinks of a way to make an
app 10x faster once they have finished the first
implementation but the current version still meets user
standards, this improvement is not technical debt and
should be tracked in the backlog as “enhancement
ideas”.

We must assess whether our implementation meets
today’s performance and usability standards. If it does,
then improvement ideas are not technical debt, but
enhancement suggestions.

21

Sv S Silicon Valley Software Group 99
TECHNICAL DEBT

MANAGING TECHNICAL DEBT DAY-TO-
DAY

Here are some common scenarios on how to apply the
recommendations presented above.

Do We Need a Dedicated Team for Technical Debt?

Some companies have teams dedicated to maintenance, often called
“sustaining engineering.” While this may work for some large
enterprises, it often creates a couple of problems: Firstly, the
engineers working on new features may feel that they are superior to
those working on the maintenance backlog. Secondly, the “1st class”
engineers may be disincentivized to focus on quality knowing that the
“2nd class” team will fix their bugs later.

In addition, the amount of resources allocated toward bug fixes and
minor enhancements should vary from release to release to match the
current needs of the business.

Sustaining engineering teams may lead to
"'moral hazard", whereby the development
team relaxes its standards of quality.

The same applies to reducing technical debt. Some preventive
technical debt reduction should be performed at each release—
upgrading all packages, frameworks, and tools to the current
version—while the rest should be prioritized in the backlog alongside
new features, based on the benefits each brings to customers and the
company.

I S,
Sv S Silicon Valley Software Group 23
TECHNICAL DEBT

Managing Technical Debt in the Backlog

The backlog review is when engineers need to speak up for prioritizing
technical debt. More than anyone, they understand the impact of
ignoring important items in the backlog—but to get their point across,
they need to translate their requests into a compelling business case
for the rest of the stakeholders.

Compare the two arguments for rewriting a module:

I Argument #1: “We need to rewrite this
module because it is very poorly written.”

Argument #2: “Once we rewrite this very
poorly written module, it will take us half
the time currently forecasted for these five
items on the backlog—in other words, if we
spend one week on the rewrite, we gain
two weeks on these five items.”

The first argument will never win against a new feature or
enhancement requested by customers. However, the second shows
real value: an extra two weeks of engineering resources.

Sv S Silicon Valley Software Group 24
TECHNICAL DEBT

Strong Arguments for Prioritizing Technical Debt
Reduction

e ROI: Fixing it will increase velocity on upcoming roadmap
items, evaluated over a period of 2-3 years

e Risk: The product will break if we do not fix it. Even if we
cannot forecast the breaking point, we know that the
likelihood is increasing over time, and the penalty in terms
of cost and customer pain is too great to risk

e Security: It will make us more vulnerable to security
breaches and could cause catastrophic damage

e Usability: It is hurting usability, and we can measure this
with tools like Mixpanel or Amplitude. There is no point in
building new features if the existing functionality does not
engage our current users

Dealing with Outdated Architecture

In a typical growth scenario, a startup begins with a simple
implementation of its product. In its search for product-market fit, the
product evolves and new features are added. Eventually the initial
architecture no longer fits customer needs —this is completely
normal and must be anticipated and planned for, by reserving
funding in the future as well as time on the roadmap.

Engineers will intuitively know when the company has reached this
point as new features will require more work retrofitting existing code
than implementing the new functionality itself.

https://mixpanel.com/
https://amplitude.com/

Sv S Silicon Valley Software Group 95
TECHNICAL DEBT

For companies raising funds, it is highly recommended to raise enough
new money to not only implement new features, but also to re-architect
the code. By actively managing this process, we can avoid a perpetual

state of crises and quick-fixes.

Fixing Buggy Code

There are many reasons for software to contain buggy modules. The
code may have been designed poorly at the onset, enhanced too
quickly over time, or not properly tested before release. While taking
the time to fix this code is unattractive, the payoff for refactoring over
time is well worth it. The key is to frame the decision in the context of a
two- to three-year ROI.

Handling Debt from the Previous Release

Rare is the release where engineers have time to write clean, well-
documented code that follows best practices and is fully supported by
automated tests. It is important to follow a process where code from
each release is refreshed before the next to avoid an unhealthy
accumulation of technical debt from mistakes or shortcuts during
implementation.

We should dedicate time to bring the most recent
code up to standard at the beginning of each new
release. The few days that we spend will be paid
back over the next few years by the absence of
bugs, faster regression testing and the readability
of the code when we add new features.

Sv S Silicon Valley Software Group 2%
TECHNICAL DEBT

GAINING CONTROL OF YOUR
TECHNICAL DEBT

Technical debt is created the moment a product is first released, and
typically continues to accrue during each subsequent release. This is a
natural process. If neglected it has the potential to irreversibly

damage customer relationships, throw a wrench in the product
roadmap, or even bring the entire operation to a standstill. Like
financial debt, the longer we wait to deal with it, the more debilitating it
can become.

On the other hand, when we take a proactive approach to technical
debt and use a rational decision-making process, we can allocate the
right engineering resources to paying it down when it makes sense for
the business.

Whatever the size of our company, managing
technical debt—just like managing financial
debt—is a “life skill” that we all need to master
as business and engineering leaders.

By applying the analysis framework presented here, we will
communicate effectively and make ROI-based decisions. This will
reduce risk, deliver more value to our customers, and increase our
competitiveness in the market.

Sv S Silicon Valley Software Group
TECHNICAL DEBT

THE AUTHOR

Bernard Fraenkel
PRACTICE LEAD IN SAN FRANCISCO

Bernard Fraenkel has over 20 years of
experience leading engineering teams
that deliver mission-critical software
applications for the enterprise. In the
past few years, his teams have
delivered SaaS and mobile
applications in markets as diverse as
digital marketing, mobile banking,
distributed storage, education,
augmented reality, social messaging,
email, web hosting, e-commerce,
neuroscience and distance learning.

Sv S Silicon Valley Software Group 28
TECHNICAL DEBT

Silicon Valley Software Group (SVSG)

Silicon Valley Software Group (SVSG) is a team of Silicon Valley CTOs
dedicated to leading organizations around the world to the forefront of
innovation. SVSG CTOs bring high-level and hands-on technology
expertise into organizations by providing guidance on emerging
technology trends, incorporating best practices into product
development, and navigating growth at every stage.

SVSG consultants are recognized authorities in their fields. Each has
experience as a Chief Technology Officer and has founded one or
more successful ventures of their own. Many have launched products
for major organizations including Google, Microsoft, Yahoo Japan, The
United States Government, The Government of Malaysia, TRUSTe, US
Open Data, UpWork, Deutsche Bank, MIT, UC Berkeley, Stanford, and
The Robotics Institute.

SV'S6

1161 Mission St.
San Francisco, CA 94103

+1 844 946 SVSG

WWW.SVSJ.CO

/7N
0 TRUSTe . @.,
YaHoO! swsoe P N J.D. POWER \>
A JAPAN C SmartThings "'SA%%%%ERES <A\ .’ McGRAW HILL FINANCIAL AN'!'.E.NNA

N2

P
work ~rocketfuel Kglturda MoMA

